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Abstract. Ermakov systems of arbitrary order and dimension are constructed. These inherit an
underlying linear structure based on that recently established for the classical Ermakov system.
As an application, alignment of a(2 + 1)-dimensional Ermakov and integrable Ernst system is
shown to produce a novel integrable hybrid of a(2 + 1)-dimensional sinh–Gordon system and
of a conventional Ermakov system.

1. Introduction

The study of the coupled pair of nonlinear ordinary differential equations now known as
Ermakov systems originated in 1880 [1]. In the intervening years, there has been extensive
literature devoted to their analysis [2–30]. Ermakov systems arise, most notably, in nonlinear
optics [31–35] but also in nonlinear elasticity [36, 37]. The main theoretical interest in such
systems resides in the fact that they admit, generically, an integral of motion known as
the Lewis–Ray–Reid invariant. In a recent key development, it was shown in [24] that the
classical Ermakov system is, in fact, linearizable, that is, C-integrable in the terminology
of Calogero [38–41]. It turns out that the Lewis–Ray–Reid invariant plays a crucial role in
that linearization.

In a recent development [42],N -component Ermakov systems were introduced which
can be iteratively reduced to(N − 2) linear equations augmented by a canonical two-
component Ermakov system. Here, we extend the concept of Ermakov systems to higher
dimension and order. The nonlinear systems so introduced admit a reduction to a linear base
system which incorporates the higher-dimensionality and order, together with a canonical
two-component Ermakov system.

An application to soliton theory is made through a particular reduction of a recently
introduced(2 + 1)-dimensional Ernst system [43] which incorporates features of both an
Ermakov and a(2 + 1)-dimensional sinh–Gordon system.

2. The classical Ermakov system

The classical Ermakov system as extended by Ray and Reid [6] adopts the form

ü+ ω(t)u = f̄ (v/u)

u2v
v̈ + ω(t)v = ḡ(u/v)

v2u
(1)
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where f̄ , ḡ and ω are arbitrary functions of their indicated arguments and the overdot
designates the derivative d/dt . The associated first integral

I = w2(u, v)

2
+

∫ u/v

ḡ(λ) dλ+
∫ v/u

f̄ (µ) dµ (2)

is termed the Lewis–Ray–Reid invariant of the system (1). Here,w(u, v) = uv̇−vu̇ denotes
the Wronskian ofu and v with respect tot . Relation (2) implies thatw is a function of
u/v only, whence (1) assumes the equivalent form

ü+ ω(t)u = f (v/u)

u3
w2(u, v) v̈ + ω(t)v = g(u/v)

v3
w2(u, v). (3)

It will prove convenient to adopt this formulation of the classical Ermakov system in the
remainder of this paper.

On introduction of the change of dependent and independent variables

u = a(z)φ v = b(z)φ z = ψ/φ (4)

whereφ andψ are linearly independent solutions of the linear base equation

φ̈ + ω(t)φ = 0 (5)

the Ermakov system (3) reduces to the autonomous form

a′′ = f (b/a)

a3
w2(a, b) b′′ = g(a/b)

b3
w2(a, b) (6)

with the Wronskianw(a, b) = ab′ − ba′ and the derivative′ = d/dz.
The fundamental observation made by Athorneet al [24] is that the canonical system (6)

is linearizable via a further change of dependent and independent variables. This reduction
has been subsequently obtained by means of Lie group methods [44] and reinterpreted in
[45]. Thus, in [45] it was shown that the reciprocal transformation

ã = z/b b̃ = 1/b z̃ = a/b (7)

decouples the system (6) into twolinear equations of thesameform, namely

ãz̃z̃ − (ln W)z̃ãz̃ + g(z̃)ã = 0 b̃z̃z̃ − (ln W)z̃b̃z̃ + g(z̃)b̃ = 0 (8)

where

W =
∫ z̃

[s−3f (s−1)− sg(s)] ds. (9)

This result was exploited in [42] to construct a Darboux transformation linking sequences of
Ermakov systems. Here, it is the autonomizing transformation (4) which provides the guide
to the construction of the generalized Ermakov systems to be introduced in the following
section.

3. Generalized Ermakov systems

Here, we construct a natural generalization of Ermakov systems to arbitrary order and
dimension. These nonlinear coupled systems admit reduction to a linear base equation
encapsulating the order and dimension, together with the canonical Ermakov system (6)
which captures the nonlinearity.

It is convenient, at the outset, to introduce a linear differential operator

L(∂i) ∂i = ∂/∂xi (10)
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of arbitrary order and dimension. In analogy with (4) we set

u = a(z)φ v = b(z)φ z = ψ/φ (11)

where (a, b) is a solution of the canonical system (6) andφ,ψ are as yet unspecified
functions ofxi . The following result is readily established.

Theorem. If (u, v) is connected to(φ, ψ) via the relations given by (11) where(a, b) is
a solution of the canonical Ermakov system (6), then the identity

L(Di)

(
u

v

)
= QL(∂i)

(
φ

ψ

)
(12)

is obtained, where the matrix-valued quantitiesDi andQ are defined by

Di = ∂i + 1

wi

(
vXi −uXi
vYi −uYi

)
Q =

(
a − a′z a′

b − b′z b′

)
(13)

with

Xi = f (v/u)

u3
w2
i Yi = g(u/v)

v3
w2
i (14)

andwi = uvxi − vuxi .

Proof. The result is established by induction. Without loss of generality, we consider only
operators of the form

L(∂i) = ∂i1 · · · ∂in . (15)

It is readily verified that†
[Di,Dk] = 0 (16)

and this, in turn, guarantees the compatibility of the Frobenius system

DiP = 0. (17)

In fact, it may be shown that

DiQ = 0 (18)

and, indeed, the general solution of (17) is given by

P = QC (19)

whereC is an arbitrary constant matrix.
If it is now assumed that

Di1 · · ·Din

(
u

v

)
= Q∂i1 · · · ∂in

(
φ

ψ

)
(20)

for specifiedn then

DkL(Di)

(
u

v

)
= DkQL(∂i)

(
φ

ψ

)
= Q∂kL(∂i)

(
φ

ψ

)
(21)

on use of (18). But, the initial condition(
u

v

)
= Q

(
φ

ψ

)
(22)

holds identically so that the general result (12) follows by induction. �
† It should be pointed out that the validity of the notationL(Di) depends upon commutativity of the operators
Di .
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The above theorem shows that, since in the generic case detQ = w(a, b) 6= 0, the
solution of the nonlinear coupled system

L(Di)

(
u

v

)
= 0 (23)

for u and v admits the representation (11) wherea and b are governed by the canonical
Ermakov system (6) if and only if

L(∂i)

(
φ

ψ

)
= 0. (24)

Accordingly, in the above reduction, the higher dimensionality and order of the nonlinear
system (23) are embodied in the linear base system (24), while its nonlinearity is
encapsulated in the autonomous Ermakov system (6). The latter is linearizable, as indicated
in section 2.

The classical Ermakov system is readily retrieved as a specialization of the above
formulation. Thus, if we consider the system (23) associated with the operatorL(∂t ) = ∂nt
then itsu-components corresponding ton = 0, 1, 2, 3, . . . yield, in turn,

u = 0

ut = 0

utt −X = 0

uttt − [(wX)t + (vX − uY )X]w−1 = 0

...

(25)

where the index onX, Y andw has been dropped. The linear combination of (25)1 and
(25)3 corresponding to the operatorL = ∂2

t +ω(t) produces the classical Ermakov equation

utt + ω(t)u = X. (26)

Its companion

vtt + ω(t)v = Y (27)

is obtained analogously via thev-component of (23).
In the above, the sequence (25) indicates that a hierarchy of Ermakov systems may be

obtained by the action ofDt on their predecessors. Indeed, we may regardDt and, more
generally,Di as recursion operators. This extension of the notion of Ermakov systems is
examined in more detail in the next section.

4. Classical Ermakov hierarchies. A recurrence operator formalism

Recursion operators are well established in soliton theory as a tool for generating hierarchies
of S-integrable nonlinear equations (see e.g. [46]). Likewise,C-integrable Burgers
hierarchies have a natural recurrence operator formalism [47]. In the preceding, we have
adopted the terminology of Calogero (see e.g. [41]) in whichS-integrable andC-integrable
systems are those amenable to some form of inverse scattering transform and linearization
respectively.

In the following, we focus on Ermakov hierarchies of coupled ordinary differential
equations with associated operators

L = ∂nt . (28)
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Thus, the Ermakov hierarchy

L(Dt)

(
u

v

)
=

[
∂t + 1

w

(
vX −uX
vY −uY

)]n (
u

v

)
= 0 (29)

wherew = uvt − vut and

X = f (v/u)
w2

u3
Y = g(u/v)

w2

v3
(30)

is considered. The relation

Dn
t

(
u

v

)
= Q∂nt

(
φ

ψ

)
(31)

which holds modulo the canonical Ermakov system (6) may be alternatively introduced via
the vector-valued generating functionsF andF given formally by

F =
∑
n

λ−nDn
t

(
u

v

)
F =

∑
n

λ−n∂nt

(
φ

ψ

)
(32)

where λ is a constant parameter. Thus, the relation (31) is encoded in the gauge
transformation

F = QF (33)

while the fact thatDt is a recurrence operator is represented by the relation

DtF = λF (34)

or, explicitly,

Ft =
[

1

w

( −vX uX

−vY uY

)
+ λ

(
1 0
0 1

)]
F. (35)

It is noted that, in view of (18),DtQ = 0, so thatQ is a solution of (34) withλ = 0. This
suggests the notationQ = F(0), whereupon (33) may be written as

F = F(0)F . (36)

Introduction of the further gauge transformation

F̄ =
(
α 0
0 β

)
F (37)

where

α = exp
∫ v/u

sf (s)ds β = exp
∫ u/v

sg(s) ds (38)

reduces (35) to the canonical form

F̄t =
[(

0 q̄

r̄ 0

)
+ λ

(
1 0
0 1

)]
F̄ (39)

with

q̄ = uα

wβ
X r̄ = − vβ

wα
Y. (40)

The linear matrix equation (39) is reminiscent of the spatial part of theAKNS scheme
[48] in soliton theory, namely

8x =
[(

0 q

r 0

)
+ λ

(
1 0
0 −1

)]
8. (41)
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Under a gauge transformation akin to (36), namely

8 = 8(0)4 (42)

where8(0) is a matrix-valued solution of (41) for vanishing spectral parameterλ, the
scattering problem (41) becomes

4x = λS4 (43)

where

S = 8−1(0)σ38(0) (44)

and σ3 = diag(1,−1) is the usual Pauli matrix. The linear equation (43) in the new
eigenfunction4 is the counterpart ofFt = λF in the case of the Ermakov hierarchy (29).

5. Application to a (2 + 1)-dimensional integrable Ernst-type equation

In a recent development, a strong(2 + 1)-dimensional integrable extension of the Ernst
equation of general relativity [49]

Ezz̄ + 1

2

ρz̄

ρ
Ez + 1

2

ρz

ρ
Ez̄ = EzEz̄

Re(E) ρzz̄ = 0 (45)

has been constructed in [43] via theLKR linear triad representation [50, 51]. In [43],
various canonical reductions and specializations along with compatible Darboux-type
transformations have been discussed. Amongst these is a(2+ 1)-dimensional sinh–Gordon
system and analogues of a(2 + 1)-dimensional Darboux system descriptive of conjugate
coordinate systems [52] and the well known self-induced transparency (SIT) equations. The
(2 + 1)-dimensional Ernst-type equation has the form[
∂t − Et

Re(E) + i Re(ρ)

] [
Exx + Eyy − E2

x + E2
y

Re(E)

]
+ Ex

[
Et Ēx − ĒtEx

2 Re(E)2 + iρx

]

+Ey
[

Et Ēy − ĒtEy
2 Re(E)2 + iρy

]
= 0 (46)

i(ρxx + ρyy)+
[

Et Ēx − ĒtEx
2 Re(E)2

]
x

+
[

Et Ēy − ĒtEy
2 Re(E)2

]
y

+
[

Ex Ēx + Ey Ēy
2 Re(E)2

]
t

= 0

where E and ρ are complex functions. It is seen that in thet-independent case with
Im(ρ) = 0 the Ernst equation (45) is retrieved, wherez = x + iy.

It is readily shown that the ansatz

E = a(ψ) ρ = iσ (47)

reduces the Ernst-type equation (46) to the autonomous complex equation

a′′ = a′2

Re(a)
(48)

augmented by the real coupled system

ψxxt + ψyyt = σxψx + σyψy σxx + σyy = 1
2c(ψ

2
x + ψ2

y )t (49)

where
a′ā′

Re(a)2
= c (50)



Ermakov systems of arbitrary order and dimension 909

is a first integral of (48).
The coupled system (49) represents a disguised elliptic version of a recently proposed

(2+ 1)-dimensional integrable extension of the classical sine–Gordon equation [50]. Thus,
the change of variables

ψ̃x = ψty coshψ − σy sinhψ ψ̃y = −ψtx coshψ + σx sinhψ (51)

produces the sinh–Gordon system(
ψtx

sinhψ

)
x

+
(

ψty

sinhψ

)
y

+ ψyψ̃x − ψxψ̃y

sinh2ψ
= 0(

ψ̃x

sinhψ

)
x

+
(

ψ̃y

sinhψ

)
y

− ψyψtx − ψxψty

sinh2ψ
= 0

(52)

where we have setc = 1 without loss of generality. This system has been previously
constructed by Schief [43] via an eigenfunction–adjoint eigenfunction constraint applied to
the LKR integrable(2 + 1)-dimensional systems [53]. In fact, the subset of solutions to the
Ernst-type equation (46) obtained above may be constructed via alignment with a suitable
generalized Ermakov system. The first step in this procedure is to note that the linear terms
in (46)1 consist of

Exxt + Eyyt + i Re(ρ)(Exx + Eyy)+ iρxEx + iρyEy. (53)

Since the linear part of the generalized Ermakov system (23) is the same foru andv, we
have to impose the constraint Re(ρ) = 0 in order to identify (53) with the linear part of a
generalized Ermakov system for(u, v) = (E, Ē). This justifies the ansatz (47)2. The latter,
in turn, implies that theρ-independent imaginary part of (46)2 has to vanish identically.
This is achieved via the ansatz (47)1 or, more generally,

Ē = Ē(E). (54)

Moreover, sinceĒ(E) = ā(a), a combination of (48) and its complex conjugate produces
the relation

ĒEE + ĒE
Re(E) = Ē2

E
Re(E) . (55)

Now, on introduction of the notation(x0, x1, x2) = (t, x, y) it is seen that the constraint
(54) allows the definition of functionsf andg according to

f (Ē/E) = E3

(EĒE − Ē)2 Re(E) = g(E/Ē) (56)

whence we obtain the relations

E2
xi

Re(E) = f (Ē/E)
E3

w2
i = Xi = Ȳi (57)

in the notation of (14). On use of (55), (57) and the operatorsDi as defined in (13), equation
(46)1 together with its complex conjugate then assume the compact form

[D0D
2
1 +D0D

2
2 − σx1D1 − σx2D2]

( E
Ē

)
= 0 (58)

which is nothing but the generalized Ermakov system (23) associated with the operator
L = ∂t∂

2
x + ∂t∂

2
y − σx∂x − σy∂y . Accordingly, (49)1 is identified as the linear base equation

associated with the generalized Ermakov system (58). Furthermore, the autonomous
equation (48) together with its complex conjugate constitutes the canonical system (6) for
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(a, b = ā) with f andg defined by (56). In fact, (48) may be readily solved. Thus, bearing
in mind its invariance under the M̈obius transformation

a → c1a + ic2

ic3a + c4
(59)

we may first assume thata is real and then boost the corresponding particular solution of
(48) by the invariance (59) to obtain the general solution.

To summarize, it has been established that a suitably constrained(2 + 1)-dimensional
integrable Ernst-type equation (46) incorporates theC-integrable generalized Ermakov
system (58). The corresponding linear base equation turns out to be part of the reduced
S-integrable system (49). This suggests a more general study of nonlinear systems which
contain bothS-integrable andC-integrable features.
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